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Abstract. The classical macroscopic Maxwell equations are approxi-
mated. They are a corollary of the multipole expansion of the local elec-
trostatic potential up to dipolar terms. But quadrupolarization of the
medium should not be neglected if the molecules which build up the
medium possess large quadrupole moment or do not have any dipole
moment. If we include the quadrupolar terms in Maxwell equations we
obtain the quadrupolar analogue of Poisson’s equation:∇2φ−L2

Q∇4φ =
−ρ/ε. This equation is of the fourth order and it requires not only the two
classical boundary conditions but also two additional ones: continuous
electric field and the relation of the jump of the normal quadrupolariz-
ability at the surface to the intrinsic normal surface dipole moment. The
account of the quadrupole moment of the molecules leads to significant
differences compared to the classical electrostatic theory.

1 Introduction

The macroscopic Coulomb and Ampere’s law are [1]:

∇ ·D = ρ (1)

E = −∇φ. (2)

Here, ρ is the free charge density, φ is the electrostatic potential andD is
the electric displacement fieldwhich is linearly dependent on the electric
field intensity E [2]:

D ≡ ε0E + P = ε0E + αPE = εE (3)

where ε = ε0 + αP = ε0εr is the absolute dielectric permittivity, ε0 is
the vacuum permittivity, εr is the relative permittivity of the medium,
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αP is the macroscopic polarizability of the medium. For a homogeneous
medium (∇ε = 0) the Poisson equation for φ follows from Eqs.(1)-(3):

−ε∇2φ = ρ. (4)

The derivation of Eq.(4) involves a multipole expansion of the local po-
tential up to dipole terms, i.e., it neglects the quadrupole moment den-
sity [1, 3, 4]. Several studies of optical phenomena [5–8] have demon-
strated that the quadrupolar terms in the macroscopic Coulomb law
Eq. (1) become quite significant in cases where high gradients of E are
present. In such cases, quadrupolar term in the displacement field D
need to be introduced [8]:

D = ε0E + P− 1

2
∇ ·Q. (5)

Here,Q is the macroscopic density of the quadrupole moment tensor
(with zero trace [9]). Note that the numerical coefficient in front of∇·Q
depends on the choice of definition of the microscopic quadrupole mo-
ment q— we used the following one [9]:

q =

∫
particle

[
rr− 1

3
Ur2

]
ρlocal(r)dV, (6)

where ρlocal is the local (microscopic) charge density in the particle and
U is the unit tensor. Other definitions of q are often employed, differing
from Eq. (6) with a factor of 3 [1] or 3/2 [4].

In order to close the problem, in addition to Eqs. (1) and (5), one needs
a constitutive relation between quadrupole moment density and electric
field gradient. The equation of state of the quadrupolarization is [9]:

Q = αQ

(
∇E− 1

3
U∇ ·E

)
. (7)

Since it is of key importance for the theory of quadrupolar dielectrics,
we will present shortly its derivation in Sec. 2. Here, the coefficient αQ
is the quadrupolarizability of the medium and it can be related to the
quadrupolemoment of the solventmolecules [4,9]. Various other consti-
tutive relations have been proposed in the literature [3, 4]. Substituting
Eqs. (5), (7) into Eq.(1) and using the Ampere’s law (E = −∇φ, Eq. (2))
and the equation of state of the polarization P = αPE, one obtains the
explicit form of the electrostatic Coulomb-Ampere’s law in quadrupolar-
izable media:

∇2φ− L2
Q∇4φ = −ρ/ε (8)
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which determines the electrostatic potential φ. Here, the quadrupolar
length LQ is defined as:

L2
Q =

αQ
3ε
. (9)

In Ref. [9], we used data for the partial molar volumes and entropies for
various ions to estimate this quantity for water: LQ = 2.5± 1.5 Å. Equa-
tions (8) and (9) are of the same form as those of Chitanvis [3], the only
difference being the obtained different numerical coefficient in Eq. (9).
At LQ = 0, the quadrupolar Coulomb-Ampere’s law Eq. (8) simplifies to
the standard Poisson equation (Eq. (4)). Equation (8) opens a vast field
for analysis of the effect of the quadrupole moments of the molecules
composing a medium on many electrostatic phenomena. The correction
forQwill be important if the solventmolecules possess large quadrupole
moment — such is the case of water [10] and many others, including
"non-polar" media of low dipole moment but high quadrupole moment
such as liquid CO2, fluorocarbons, etc. [4,11].

2 Equation of State for the Quadrupole Moment Density

The problem for the constitutive relation between Q and the field gra-
dient ∇E has been addressed several times [3–5, 8, 12–15]. Using as a
starting point the approach of Jeon and Kim [4], we obtained in Ref. [9]
a new simple equation of state which relatesQ to the field gradient ∇E
and the molecular properties of the solvent (Eq. (7)). Here we will mark
the basic points of that derivation.

Consider an ideal gas consisting of molecules possessing a solid
quadrupole moment tensor q0 (for the sake of simplicity, the molecule is
assumed non-polarizable and with no dipole moment). Since q0 is sym-
metrical and traceless, by a suitable choice of the coordinate system it
can be diagonalized [5] and in the general case, its diagonal form is:

q0 =

 qxx 0 0
0 qyy 0
0 0 qzz

− qxx + qyy + qzz
3

U. (10)

Here we remove the trace of the quadrupole moment because it causes
a constant potential (Bethe potential [16]) which has no contribution to
the electric field [8]. The molecule is freely rotating. In a rotated frame
the quadrupole moment tensor changes from q0 to q:

qij(ϕ,ψ, θ) = Eik(ϕ,ψ, θ)Ejl(ϕ,ψ, θ)q0kl (11)

whereϕ,ψ and θ are the Eulerian angles and E(ϕ,ψ, θ) is the Eulermatrix.
In the absence of a gradient of the electric field the average value of q is
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q0. In an external electric field gradient ∇E, the electric energy of the
molecule is given by the expression (Eq 4.17 of Jackson [1]):

uel = −1

2
q : ∇E. (12)

The symbol “:” denotes double scalar product,A : B = AijBji.The prob-
ability for a given orientation of themolecule follows the Boltzmann dis-
tribution which can be linearized in the case of uel/kBT � 1:

ρ(ϕ,ψ, θ) = cn exp

(
− uel

kBT

)
≈ cn

(
1− uel

kBT

)
. (13)

Here, kB is the Boltzmann constant, T is the absolute temperature and
cn is a normalizing coefficient which can be obtained from the condition∫
ρ(ϕ,ψ, θ)dΩ = 1. The average quadrupole moment q̄ of a molecule can

be calculated directly using Eqs. (10)-(13):

q̄ =

2π∫
0

2π∫
0

π∫
0

qρ(ϕ,ψ, θ) sin θdθdϕdψ = αq

(
∇E− 1

3
U∇ ·E

)
(14)

Here, we have introduced themolecular quadrupolarizability αq which is
related to the diagonal components of q0 as follows:

αq = q0 : q0/10kBT (15)

Equation (15)was obtained e.g. inRef. [4]. The derivation above is strictly
valid for a gas of solid quadrupoles. It can be readily generalized to in-
clude molecular quadrupolarizabilities, αq0 [4] and then we obtain the
expression:

αq = αq0 + q0 : q0/10kBT (16)

In the presence of a field gradient∇E, the macroscopic densityQ of the
quadrupole moment in a gas is the gas concentrationC times q̄, Eq. (14).
Therefore, we finally obtain Eq. (7) with macroscopic quadrupolarizabil-
ity defined as αQ = Cαq. The relation αQ ∼ C(αq0 + q0 : q0/10kBT )
can be compared to the linear Langevin-Debye formula αP ∼ C(αp0 +
p ·p/3kBT ) [1,2] (αp0 and p are the average polarizability and the dipole
moment of the solvent molecule).

3 Boundary Conditions for the Generalized Poisson Equation

The quadrupolar equation for φ (Eq. (8)) is of the fourth order and re-
quires additional boundary conditions compared to Poisson’s equation.
One of these new boundary conditions was deduced by Graham and Raab
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[7, 17] and by Batygin and Toptygin [13], and it explicitly relates the in-
trinsic surface normal dipole moment P S

z to the bulk quadrupole densities.
Following Graham and Raab [7], we will derive the boundary conditions
using the singular distribution approach developed by Albano, Bedeaux
and Vlieger [18,19]. We investigate a flat interface at z = z0 between two
quadrupolar dielectrics; this interface has surface charge density ρS and
intrinsic surface dipole moment density PS. First, we write the singular
distributions of ρ,P andQ:

ρ = η+ρ+ + η−ρ− + δρS, (17)

P = η+P+ + η−P− + δPS (18)

Q = η+Q+ + η−Q−. (19)

Here, X+ and X− denote the corresponding physical quantities for the
phase situated at z > z0 and z < z0, respectively; η is the Heaviside
step function, η+ ≡ η(z − z0), η− ≡ η(z0 − z); δ ≡ δ(z − z0) is the Dirac
delta function. If we want to include the surface excess of the quadrupole
moment density, we should take into account the bulk octupole moment
density. The electric field is intensive variable and so its singular distri-
bution is:

E = η+E+ + η−E−. (20)

The distributions ofP,Q andE (Eqs. (18)-(20)) are substituted in Eq. (5)
to obtain the singular distribution ofD:

D = η+D+ + η−D− + δDS (21)

where D+ and D− are the displacement fields for the upper and lower
phase, respectively:

D± = ε0E
± + P± − 1

2
∇ ·Q±. (22)

and the surface excess of the electric displacement:

DS = PS − 1

2

(
ez ·Q+ − ez ·Q−

)
. (23)

In the derivation of the last equations we used the relation∇· (η±Q±) =
η±∇·Q±±δez ·Q± and that the Dirac delta function is a derivative of the
Heaviside step function: ∇η± = ezdη±/dz = ±ezδ. The singular distri-
butions Eqs. (21) and (17) ofD and ρ are then substituted into Coulomb’s
law Eq. (1) to obtain the singular expansion of the quadrupolar Maxwell
equation:

η+(∇ ·D+ − ρ+) + η−(∇ ·D− − ρ−)

+ δ(D+
z −D−z +∇ ·DS − ρS) + δ1D

S
z = 0 (24)
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where δ1 = dδ/dz. The above equation further simplifies to:

η+(∇ ·D+ − ρ+) + η−(∇ ·D− − ρ−)

+ δ(D+
z −D−z +∇S ·DS − ρS)|z=z0 + δ1D

S
z |z=z0 = 0 (25)

Here, we have used the properties of the singular functions: δf(z) =
δf(z0) and δ1f(z) = δ1f(z0)−δ(df/dz)|z=z0 and∇S denotes surface tan-
gential derivative (in flat symmetry ∇S = ex∂/∂x + ey∂/∂y). Next, we
use the linear independence of η± and δ to decompose Eq. (25) to obtain,
first, the bulk equations for the two phases (the coefficients of η± in Eq.
(25)):

∇ ·D± = ρ± (26)

Further, the coefficient of δ in Eq. (25) has to be 0, which gives a gener-
alization of the Gauss law for the quadrupolar media:

D+
z −D−z +∇S ·DS − ρS = 0 (27)

The last term of Eq. (25), proportional to δ1, results in a new boundary
condition, which relates the intrinsic surface dipole moment P S

z to the
jump of the quadrupole moment , cf. Eq. (23):

Q+
zz −Q−zz = 2P S

z (28)

This equationwas derivedwith the classicalmethods byBatygin andTop-
tygin [13]; compare also to Eq. 65 of Shen and Hu [20]. We will refer to it
as tomultipolar (dipolar) condition for the jump of the electric field gradient.
Wewill consider only flat symmetry in this study (the quadrupolarization
tensor has diagonal elements only) and surfaces with no tangential po-
larization. Therefore, Eq. (27) simplifies to:

D+
z −D−z = ρS, (29)

which is formally equivalent to the classical Gauss law, but onemust keep
in mind that D involves higher derivatives of the field E, cf. Eq. (5). Two
additional boundary conditions complete the set, namely, the potential
and the electric field must be continuous at z = z0,

φ+|z=z0 = φ−|z=z0 = φS, E+|z=z0 = E−|z=z0 = ES (30)

Instead of continuousE, Chitanvis imposed continuity of the second nor-
mal derivative of the normal field but the field itself remained discontin-
uous in his work. Equations (8) and (28)-(30) define a unique solution
for the electrostatic potential φ. Some simple consequences of it were
investigated in Ref. [9, 21–23] and are summarized in the next few sec-
tions. Compared to the results of the classical dipolar electrostatics, two
common features of the solutions of the quadrupolar electrostatic law are
the regularization of the potential and the damping of the field gradient.
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4 Effect of the Quadrupolarizability of the Media

In this Section we will apply the general equation Eq. (8) of the electro-
statics of quadrupolar media and its boundary conditions Eqs. (28)-(30)
to solve several basic electrostatic problems for point sources in both iso-
lators and conductors.

4.1 Point sources in an insulator

First, we consider a point charge with ρ(r) = qδ(r). In this case, Eq. (8)
reads as:

1

r2

d

dr
r2 d

dr
φ−

L2
Q

r2

d

dr
r2 d

dr

1

r2

d

dr
r2 d

dr
φ = −qδ(r)

ε
. (31)

The general solution of this equation is:

φ = A0 +
A1

r
+A2

e−r/LQ

r
+A3

er/LQ

r
. (32)

In order to determine the four integration constants we need to impose
conditions on φ. First, we require the potential to be non-divergent as
r →∞ (this givesA3 = 0,A0 has no physical meaning and we set it to be
0). The second condition is that the asymptotic behavior of φ as r → ∞
is unaffected by the presence of quadrupoles, that is, the potential of
a point charge at r → ∞ tends to q/4πεr. This condition yields A1 =
q/4πε (note that the same result can be obtained by the Gauss law as
well). We need one final condition in order to determine A2. We impose
the requirement that the electric field E tends to something finite as r →
0, i.e., there is no singularity of E at r → 0, which gives A2 = −A1. Thus,
we obtain solution for the potential which is also finite:

φ =
q

4πε

1− e−r/LQ

r
. (33)

The value of the potential at r = 0 is φ0 = q/4πεLQ. The point charge
has, therefore, a finite self-energy:

uel =
qφ0

2
=

q2

8πεLQ
. (34)

This result is in marked contrast to the case of a point charge in vacuum
where the potential is diverging as 1/r and the electrostatic self-energy
of a point charge is infinite (Figure 1a). For a point charge in water at T =

298K, if LQ = 2 Å, we obtain φ0 = 92mV and uel = 3.6kBT . Equation 2.8
of Chitanvis [3] has the same form as Eq. (33) (but his relation between
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Figure 1: Electrostatic potential of a) a point charge, Eq. (33), and b) a
point dipole (|p| = 2.8D = 9.34 × 10−30 C m), Eq. (35), in a quadrupolar
medium vs. the distance r from the point charge/dipole in water (ε =

78× ε0, LQ = 2 Å). In a quadrupolar medium, the point charge has finite
potential at r = 0; the potential of the point dipole is also finite but
discontinuous at r = 0. Blue solid line: LQ = 2 Å; red dashed line:
LQ = 0 (the classical solution).

LQ and αQ is different). Equation (33) can be compared also to Eq. 2.48
of Jeon and Kim [4], who obtained a divergent potential since they used
another constitutive relation for Q and implied different conditions on
their solutions to determine the integration constants.

The potential of a point dipole in quadrupolar medium can be obtained
from the point charge formula Eq. (33) using the general relation φp =
−p · ∇φ/q (p is the dipole moment). The result is:

φp =
p · r

4πεr3

[
1−

(
1 +

r

LQ

)
e−r/LQ

]
. (35)

This potential is finite, but not continuous. It is illustrated in Figure 1b.
Finally, a point quadrupole with quadrupole moment q in a quadrupole
medium has a potential given by:

φq =
3r · q · r
8πεr5

[
1− 1

3

(
1 + 3

r

LQ
+

r2

L2
Q

)
e−r/LQ

]
. (36)

Here, we have employed the well-known formula φq = q : ∇∇φ/q.
Let us summarize the results that we obtained for a point source in
a quadrupolar medium. The potential of a point charge in a dipolar
medium has 1/r singularity at r = 0, while it is finite and continuous in
quadrupolar medium, Eq. (33). The point dipole classically has a ∼ 1/r2

singularity in dipolar medium, while in a quadrupolar one it has finite
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(but discontinuous) potential, Eq. (33). Finally, the potential of a point
quadrupole has a 1/r3 singularity in a dipolar and 1/r singularity in a
quadrupolar medium, Eq. (36). It is easy to predict that in an octupolar-
izable medium, not only the potential, but also the field of a point dipole
will be finite and continuous, and thus the self-energy -p·E(0) of a dipole
in an octupolar medium must be finite. A point quadrupole in octupolar
mediumwill have a finite continuous potential, but singular∇E and infi-
nite self-energy; higher-order macroscopic multipolarizability will lead
to additional regularization.

4.2 Point charges in conducting media

In the case of conducting media, one has to consider the charge density
of themobile charges ρmobile. We need to know the dependence of ρmobile

on the electrostatic potential. In this work, we assume that the mobile
charges are distributed according to the Boltzmann distribution:

ρmobile =
∑
i

qiCi exp− (qiφ/kBT ) (37)

where qi and Ci are the charge and the concentration of the ith type
of mobile carrier, respectively. Following Debye and Hückel, we lin-
earize the exponent in Eq. (37) and use the electroneutrality condition∑
i qiCi = 0 to obtain:

ρmobile = −εφ/L2
D (38)

where the Dybye length is defined as

L2
D =

εkBT∑
i q

2
iCi

. (39)

Substituting Eq. (38) into the Poisson Eq. (4), one obtains what is known
as the Debye-Hückel equation [24] (or the linearized Poisson-Boltzmann
equation). The generalization of the Debye-Hückel equation for a point
charge in quadrupolarizable media reads as

1

r2

d

dr
r2 d

dr
φ−

L2
Q

r2

d

dr
r2 d

dr

1

r2

d

dr
r2 d

dr
φ = −qiδ(r)

ε
+

φ

L2
D

. (40)

We impose two boundary conditions to this equation. The first one is
the standard electroneutrality condition

∫
ρdV = 0. The second one is

less orthodox — we require that the potential does not diverge at the
origin, φ(0) <∞. The validity of the second condition is discussed in the
previous Sec. 4.1.The non-divergent at r → ∞ solution of this equation
is given by

φ =
qi

4πε

l2D + l2Q
l2D − l2Q

e−r/lD − e−r/lQ

r
(41)
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wherewehave introduced (as common for biharmonic equations) the two
characteristic lengths lD and lQ wich are related to LD and LQ as:

lD = LQ

1

2
− 1

2

√
1− 4

L2
Q

L2
D

−1/2

, lQ = LQ

1

2
+

1

2

√
1− 4

L2
Q

L2
D

−1/2

.

(42)
The inverse relations which define LD and LQ through lD and lQ are sim-
pler

L2
D = l2D + l2Q, L−2

Q = l−2
D + l−2

Q . (43)

The potential in Eq. (41) is finite and its value at r = 0 is

φ0 =
qi

4πεLQ

(
1 + 2

LQ
LD

)−1/2

. (44)

As was the case of a point charge in an insulator, the energy of the point
charge is finite

uel =
qiφ0

2
=

q2
i

8πεLQ

(
1 + 2

LQ
LD

)−1/2

. (45)

In the limit LD →∞ Eq. (41) simplifies to the potential of a point charge
in an insulator (Eq. (33)). In the case of negligible quadrupolarizability
(LQ → 0), Eq. (41) reduces to the classical Debye-Hückel potential of a
point charge:

φ =
qi

4πε

e−r/LD

r
(46)

The dependence Eq. (42) of the characteristic lengths lD and lQ on
LD/LQ is analyzed in Figure 2. In dilute solutions, where LD � 2LQ,
both lengths lD and lQ are real, and lD is almost equal to LD while lQ is
almost equal toLQ (Figure 2, to the right of the bifurcation), which is the
reason for the choice of indices. At a certain critical value of the Debye
length (LD = 2LQ), the lengths lD and lQ become equal to each other.
The critical concentration is Ccr = εkBT/8e

2L2
Q. At the critical value of

LD the potential in Eq. (41) degenerates to the following result:

φ =
qi

4πε

√
2

LD
e−
√

2r/LD . (47)

This change in the functional dependence from exp(−r)/r to exp(−r)
corresponds to a kind of "resonance" between the diffuse atmosphere of
the mobile charges and the quadrupole moment cloud around a charge.
When LD < 2LQ, the two characteristic lengths in Eq. (42) become com-
plex and complex conjugate to each other (Figure 2, to the left of the bi-
furcation), i.e., the potential (Eq. (41)) while diminishing with distance
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/ ,l LQ Q

/l LD Q

R
e(

/
)

l
L

D

Q

Re( / )l LQ Q

Im( / ) =l LQ Q

Im(lD/ )LQ

/LD LQ

Figure 2: Dimensionless characteristic lengths lD/LQ and lQ/LQ as func-
tions of the dimensionless Debye length LD/LQ, Eq. (42). Red solid
line: Re(lD/LQ); red dashed line: Re(lD/LQ); blue lines: Im(lQ/LQ) and
Im(lD/LQ).

exhibits an oscillatory behavior. In this case one can rearrange Eq. (41)
in the form:

φ =
qi

4πε

l2Re − l2Im
lRelImr

exp

(
− lRe

l2Re + l2Im
r

)
sin

(
lIm

l2Re + l2Im
r

)
(48)

where lRe = RelD and lIm = ImlD. One can easily derive the following
expressions for lRe and lIm

lRe/Im =
LD

2

√
±1 + 2

LQ
LD

. (49)

It is well-known that oscillations of the electrostatic potential and the
charge density exist [25–28]; oscillation of wavelength (l2Re + l2Im)/lIm
related to quadrupolarizability is, however, a fundamentally new phe-
nomenon.

Let us nowdiscuss the structure of the diffuse layer around a point charge
in quadrupolarizablemedium in relationwith the classical Debye-Hückel
model. Physically, the quadrupolarizable medium does not support high
gradients of the field, and therefore, non-zero quadrupolar lengthLQ re-
sults in a smoother potential and slightly expanded diffuse atmosphere.
As a measure of this effect one can use the average distance between the
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central point charge and the diffuse charge of the double layer:

Ldiffuse layer =

∫
rρdV∫
ρdV

= 2
L2

D + LDLQ√
L2

D + 2LDLQ
(50)

where the expressions for ρ and φ are taken from Eqs. (37) and (41),
respectively. In the case of a low concentration of charges, Eq. (50)
can be expanded into series with respect to large LD with the result
Ldiffuse layer ≈ 2LD+L2

Q/LD+.... Thus, in the limit of the classical Debye-
Hückel model, the charge of the diffuse cloud stands at an average dis-
tance of 2LD from the central point charge. The quadrupolarizability of
the medium leads to an expansion of the cloud to 2LD + L2

Q/LD.

5 Electric Field of a Charged Surface, a Condenser and a Dipolar Surface
in Quadrupolar Medium

5.1 A charged surface and a condenser

Consider a surface of surface charge ρS (and zero dipolemoment, P S
z = 0)

in a homogeneous insulator of dielectric permittivity ε and quadrupolar
length LQ. We solve the problem as if the surface is a field source im-
mersed in a single medium, but it can be viewed as an interface between
two dielectrics of equal ε and LQ as well [22].

The quadrupolar electrostatic equations Eq. (8) forEz in the domain z >
0 (the field there is denoted by E+

z ) and z < 0 (E−z ) read as:

dE±z
dz
− L2

Q

d3E±z
dz3

= 0. (51)

The solution to this equation has to fulfil the Gauss law Eq. (29) and the
Graham-Raab boundary condition Eq. (28), not be diverging at infinity
and to be an odd function,E+

z (z) = −E−z (−z). The general solution that
fulfils these conditions is:

E±z = ±
[
1−Ae−|z|/LQ

] ρS

2ε
(52)

The integration constant A is determined employing the boundary con-
dition for continuous field Eq. (30), namely, we require E+

z (0) = E−z (0),
and we obtain that A = 1. Thus, the field of a charged surface turns out
to be:

Ez = sg(z)
ρS

2ε

[
1− e−|z|/LQ

]
(53)

where sg(z) is the signum function. The potential of a charged surface in
a quadrupolar medium is obtained upon integration of−Ez with respect
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z L/ Q

�� �/
S

LQ

a.

z L/ Q

� �Ez/
S

b.

Figure 3: Profile of a) the potential φ(z) and b) the field intensity Ez(z)
near a surface of charge ρS (suitably nondimensionalized). Comparison
of the classical solution (red dashed line) with Eqs. (53)-(54), following
from the Coulomb’s quadrupolar law.

to z

φ = −ρ
S

2ε

(
|z|+ LQe−|z|/LQ

)
. (54)

It is easy to see that the derivative of Ez has finite value at z =
0:dEz/dz|z=0 = ρS/2εLQ. In Figure 3 we compare these results with the
corresponding ones from the classical dipolar theory Ez = sg(z)ρS/2ε
and φ = −ρS|z|/2ε.
Let us consider now two charged surfaces located at z = h/2with surface
charge density ρS and at z = −h/2with charge density−ρS, respectively.
This is the problem for a condenser of finite thickness h immersed in a
quadrupolar medium. The easiest way to obtain the respective field is to
use Eq. (52) as a Green’s function for the problem. The total field inten-
sity in the three domains denoted by superscripts "+", "i" and "-" corre-
sponding to z < −h/2, h/2 > z > −h/2 and z > h/2, respectively, is
obtained by adding the fields of the two charged surfaces with the result:

E+
z = −

(
e−|z−h/2|/LQ − e−|z+h/2|/LQ

) ρS

2ε

Ei
z =

(
e−|z−h/2|/LQ + e−|z+h/2|/LQ

) ρS

2ε
− ρS

ε
(55)

E−z =
(

e−|z−h/2|/LQ − e−|z+h/2|/LQ

) ρS

2ε
.

The limit as h→ 0 of the piecewise function Eq. (55) corresponds to the
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case of an infinitely thin condenser:

E±z = −ρ
S

2ε

h

LQ
e−|z|/LQ . (56)

More importantly, this limit allows us to consider the problem of a sur-
face with surface density of the dipolar moment P S

z = hρS.

5.2 A dipole moment-carrying surface (infinitely thin condenser)

Consider a surface of dipole moment P S
z and zero surface charge density

in a homogeneous insulator with quadrupolar length LQ and dielectric
constant ε [22]. This can serve as amodel for a lipid bilayer and for certain
defective structures in crystals. The solution of Eq. (51) that does not
diverge at infinity is:

E±z = A±e−|z|/LQ . (57)

whereA+ andA− are integration constants. This solution fulfils Gauss’s
law Eq. (29) for any value of the integration constants A+ and A−. The
Graham-Raab multipole condition Eq. (28) gives the relation:

A+ +A− = − P S
z

εLQ
. (58)

In order to determine the second constant, we invoke the symmetry of
the problem, namely, the potential of the systemmust be an odd function
and Ez must be even function of z, i.e., E+

z (z) = E−z (−z). The constants
are determined as A+ = A− = −P S

z /2εLQ. Upon substituting in Eqs.
(57) and (58) the final solution for the field is obtained in the form:

Ez = − P S
z

2εLQ
e−|z|/LQ . (59)

As could be expected, this result coincides with the expression for the
field of an infinitely thin condenser (recall that P S

z = hρS. The integra-
tion of Eq. (59) gives the potential:

φ = sg(z)
P S
z

2ε

(
1− e−|z|/LQ

)
. (60)

The potential difference between z →∞ and z → −∞ is:

φ(z →∞)− φ(z → −∞) =
P S
z

ε
. (61)

Recall that the same potential difference is obtained in the dipolar elec-
trostatics as well (cf. e.g. Sec. 14 of Ref. [29]). The solution in Eqs. (59)
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z L/ Q

��/Pz

S

a.

�L E PQ z z/
S

z L/ Q

b.

Figure 4: Profile of a) the electrostatic potential φ(z) and b) field inten-
sity Ez(z) created by an infinitely thin capacitor of surface dipole mo-
ment P S

z located in z = 0 (φ, Ez and z are suitably nondimensional-
ized). The figure compares the classical solution of Poisson’s equation
(red dashed line) with Eqs. (59)-(60) that follow from the quadrupolar
equations of Maxwell.

and (60) is presented in Figure 4 together with a comparisonwith the cor-
responding results from the dipolar electrostatics φ = sg(z)P S

z /2ε and
Ez = −δ(z)P S

z /ε.

We will conclude this subsection with three final remarks. First, within
the quadrupolar electrostatic laws and Eq. (55), a capacitor creates field
that penetrates outside the plates of the condenser. This phenomenon
has no analogue in the frame of Poisson’s electrostatics. Second, the
comparison between the classical and the quadrupolar solution of the
electrostatic problems illustrated in Figure 3 and Figure 4 demonstrates
two features of quadrupolar electrostatics: first, the regularization of
the solution for the field (a charged surface creates continuous Ez and
dEz/dz and only the second derivative is discontinuous — compare to
the classical discontinuity of Ez; a dipolar surface creates continuous
field and only dEz/dz has a discontinuity — compare to the classical dis-
continuity of φ). This regularization was already observed with the point
charge problem in Ref. [9] (Section 4.1). The last remark is that the field
is continuous only if on both sides of the surface there exist quadrupo-
lar media. At the boundary between quadrupolar and non-quadrupolar
medium, the boundary condition for E (Eq. (30)) does not hold. In this
case, however, no fourth boundary condition is required.

15



Radomir I. Slavchov, Iglika M. Dimitrova, Tzanko I. Ivanov

6 Conclusion

The present work summarizes the main results of our previous studies
[9, 21–23]. We investigate the effect of taking into account the presence
of quadrupoles in the continuous medium. For this purpose we derive
a new equation of state for the quadrupolarization Q (Eq. (7)) and gen-
eralize the classic Poisson’s equation (Eq. (8)) and the required bound-
ary conditions (Eqs. (27)-(30)) for quadrupolar medium. When we ap-
ply these equations to some basic electrostatic problems we obtain re-
sults which have no analogue within the classical electrostatics: i) the
potential of a point charge in quadrupolar medium and its self-energy
are finite even at the position of the charge; ii) the potential of a point
charge in conducting media has oscillatory behaviour above certain crit-
ical concentration of the charges; iii) the electric field of a charged sur-
face is a continuous function at the surface; iv) the electric field pene-
trates outside the plates of a condenser placed in quadrupolar medium.
Therefore, the following conclusions for the characteristic features of the
quadrupolarizablemedia can be drawn: taking into account the presence
of quadrupoles in themediamakes the potential smoother anddamps the
electric field gradients.
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