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Abstract. In this paper we consider the non-abelian T-duality (NATD) of
a certain plane wave background, namely the Penrose limit of the Pilch-
Warner solution. Thenewly obtainedT-dual pp-wavemetric andNS two-
form are naturally more complicated from those in the original theory,
because NATD procedure mixes the coordinates in a non-trivial way. We
also derive theNAT-dual R-R sector by applying the Fourier-Mukai trans-
form on the corresponding pp-wave R-R fluxes.

1 Introduction

Dualities play an important role in modern physics and especially in
string theory. In general, the term duality refers to a situation where
two seemingly different physical theories turn out to be equivalent in a
nontrivial way.

In the mid-1980’s it was noticed that a string propagating on a circle of
radius R is physically equivalent to a string propagating on a circle of
radius 1/R. This phenomenon is now known as T-duality. In essence, T-
duality provides different mathematical descriptions of the same physi-
cal system. In other words, all observable quantities in one description
are identified with quantities in the dual description. In this context T-
duality is also a perturbative duality relating the weak coupling regimes
of both theories. Therefore one can test it in perturbation theory via
comparison of the corresponding string spectra.

There are different approaches to abelian T-duality mainly due to the
work of Buscher [1, 2]. In general, for any two-dimensional nonlinear
sigma model with certain isometry group (abelian or not) there exists a
clear procedure for obtaining the T-duality transformation rules. Firstly,
one has to gauge the group structure by introducing Lagrange multipli-
ers and auxiliary gauge fields into the Lagrangian of the theory. The
equations of motion for the multipliers force the field strength to van-
ish. Secondly, substituted in the gauged Lagrangian, the solutions of
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those equations reproduce the original theory. Finally, one can integrate
out the auxiliary gauge fields and interpret the Lagrange multipliers as
dual coordinates thus arriving at the (non-)abelian T-dual theory. Unlike
the abelian case, the non-abelian T-duality (NATD) has very distinctive
properties. One remarkable feature is that applying NATD on a geome-
try, which has some explicit isometry, one typically obtains dual solution
in which this isometry is no longer present. Therefore this transforma-
tion procedure is not easily invertible. Furthermore performing second
T-duality could lead to completely different theory than the original one.
Thus one can infer that NATD is not a symmetry of a conformal field the-
ory, but a symmetry between different conformal field theories.

Together with the metric and the NS two-form, the R-R fields also trans-
form under non-abelian T-duality. Although various methods have been
developed for performing this transformation, in this paper we adopt the
approach where T-duality can be lifted to K-theory as a Fourier-Mukai
transform with Poincare bundle as a kernel. It has been shown [3] that
Nahm transform of instantons is related to the transformation of D-
branes under T-duality and the concrete isomorphism between K-theory
groups, which realises this transformation on a torus of arbitrary dimen-
sions, has been identified. On the other hand, the equations of mo-
tion for a CFT with topological defects imply a direct connection be-
tween the Poincare line bundle and the boundary conditions affected by
T-duality [4]. Since boundary conditions correspond to D-branes (which
are sources of R-R charges), one can define an action of a topological de-
fect on the R-R charges. This action is of Fourier-Mukai type with kernel
given by the gauge invariant flux of the defect [5].

A strong motivation for performing this work comes from the achieve-
ments of the AdS/CFT correspondence [6]. This is a framework providing
a successful non-perturbative approach to strongly coupled Yang-Mills
theories via the properties of their dual classical supergravity solutions
and vice versa. A well-known example of strongly coupled gauge the-
ory is quantum chromodynamics, which at low energies does not allow
any perturbative treatments. Therefore one is forced to look for an alter-
native non-perturbative description of the theory in the context of the
gauge/gravity duality. The problem of producing more realistic QCD-
like theories can be reduced to finding highly nontrivial background solu-
tions that break significantly the amount of supersymmetry and confor-
mal symmetry. An example of such non-trivial supergravity background
is the Pilch-Warner (PW) geometry [7], which is holographically dual to
N = 1 Leigh-Strassler theory [8].

Second motivation for this work comes from the fact that string the-
ory in pp-waves backgrounds simplifies due to the existence of a natural
light-cone gauge, and in many cases can be exactly solved and quan-
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tized [9]. Furthermore these solutions model radiation moving at the
speed of light and may consist of electromagnetic or gravitational ra-
diation, which is important in the light of the recent discovery of gravi-
tational waves [10, 11]. Finally, the gauge interactions we detect in na-
ture are characterized by a scale and hence are not conformally invariant.
Thus, an essential step to take is to apply the Penrose-Güven limit [12,13]
on SUGRA backgrounds associated with non-conformal gauge theories.
These and other considerations suggest that obtaining and analysing
new pp-wave limits of complicated backgrounds can provide insights in
many aspects of the theory.

The Penrose limit (PL) is defined as a specific scaling of the metric and
supergravity fields along a null geodesic [12, 13]. This limit encodes dif-
feomorphism invariant information, such as the rate of growth of the
curvature and the geodesic deviation along a null geodesic of the original
space-time. Recently the authors of [14] obtained two different Penrose
limits of the Pilch-Warner NAT-dual background solution. This solutions
are much simpler than the one we found in this paper. In [14] the proce-
dure is as follows. First, one considers the NATD of the type IIB PW solu-
tion and ends up with a highly nontrivial type IIA background. Then, one
finds an appropriate Penrose limit of the new NAT-dual solution. In this
paper we proceed by interchanging the order of the procedures. First we
find a Penrose limit of the PW solution, which retains the SU(2) group
structure of the original metric. Then we apply the NATD procedure on
the G-structure of this pp-wave solution.

This paper is organised as follows. In Section 2 we give a brief review of
the general setup of non-abelian T-duality following themethod of gaug-
ing the nonabelian background isometries. Then, in Section 3 we con-
sider the special case of Pilch-Warner supergravity solution. The back-
ground geometry consists of warped AdS5 space times squashed five-
sphere. In Section 4 we find a pp-wave limit of the PW geometry around
θ = π/2 null geodesics. One observes that the pp-wave metric has mani-
fest SU(2) symmetry. This allows us to apply the NATD procedure to this
particular plane wave geometry. Here we consider the NS sector in Sec-
tion 5, and subsequently the R-R sector in section 6. Finally, in section 7
we conclude with a short summary of our results.

2 Transformation rules for NATD

2.1 The NS sector

Our consideration begins with a brief review of the general setup of non-
abelian T-duality [5] (see also [15–17]). The general transformation rules
under NATD for a given supergravity solution with non-trivial NS two-
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formB follows from the group structureGwith generators T a and struc-
ture constants fabc, a = 1, . . . ,dim(G), which is supported by the back-
ground. Let θk, are the coordinates describing the G-part of the metric.
Then we can write the metric and the B-field in the following way:

ds2 = Gµν(Y )dY µdY ν + 2GµaΩakdY
µdθk +GabΩ

a
mΩbkdθ

mdθk, (1)

B =
1

2
Bµν(Y )dY µdY ν +BµaΩakdY

µdθk +
1

2
BabΩ

a
mΩbkdθ

mdθk. (2)

For any group element g ∈ G one can construct the Maurer-Cartan one-
form

g−1dg = LaTa = Ωakdθ
kTa, (3)

where the left-invariant one-forms La satisfy the equation

dLa = −1

2
fabcL

bLc, or (4)

∂iΩ
c
j − ∂jΩci = −f cabΩaiΩbj . (5)

It is convenient to use the following form of the Lagrangian:

L = Qµν∂Y
µ∂̄Y ν +QµaΩak∂Y

µ∂̄θk

+QaµΩak∂θ
k∂̄Y µ +QabΩ

a
mΩbk∂θ

m∂̄θk, (6)

where the Q’s are given by

Qµν = Gµν +Bµν , Qµa = Gµa +Bµa, Qab = Gab +Bab. (7)

The next step is to gauge the group structure by introducing Lagrange
multipliers xa and gauge fields Aa in the Lagrangian of the original the-
ory

L = Qµν ∂Y
µ∂̄Y ν +Qµa ∂Y

µĀa +QaµA
a ∂̄Y µ +QabA

aĀb

− xa(∂Āa − ∂̄Aa + fabcA
bĀc). (8)

With this gauged Lagrangian one can easily reproduce the original theory
by simply eliminating the Lagrangian multipliers xa. The equations of
motion δL/δxa = 0 directly imply vanishing field strength

F a+− = ∂Āa − ∂̄Aa + fabcA
bĀc = 0, (9)

which has the obvious solutions

Aa = Ωak ∂θ
k, Āa = Ωak ∂̄θ

k. (10)

Plug in back these solutions into (8) we get back to the original theory
(6).
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On the other hand, to obtain the T-dual theory, we have to integrate out
the gauge fieldsAa. This leads to the following conditions (up to bound-
ary terms):

Qµa ∂Y
µ +QbaA

b − xcf cbaAb + ∂xa = 0, (11)

Qaµ ∂̄Y
µ +QabĀ

b − xcf cabĀb − ∂̄xa = 0. (12)

The solutions of these conditions are

Aa = −M−1ba (Qµb ∂Y
µ + ∂xb), (13)

Āa = M−1ab (∂̄xb −Qbµ ∂̄Y µ), (14)

where we have defined the structure matrix

Mab = Qab − xcf cab. (15)

To obtain the NATD theory we plug in Aa and Āa back into (8). The re-
sulting Lagrangian is

L̂ = Êµν ∂Y
µ∂̄Y ν + Êµa ∂Y

µ∂̄xa + Êaµ ∂x
a∂̄Y µ + Êab ∂x

a∂̄xb, (16)

where we have introduced the following notations:

Êµν = Qµν −QµaM−1ab Qbν , Êµa = QµbM
−1
ba ,

Êaµ = −QbµM−1ab , Êab = M−1ab .
(17)

The quantities of the two pictures are related by (10) and (13), (14). The
comparison gives

Ωak ∂θ
k = −M−1ba (Qµb ∂Y

µ + ∂xb), (18)

Ωak ∂̄θ
k = M−1ab (∂̄xb −Qbµ ∂̄Y µ). (19)

Finally, the dual field content in the NS sector can be extracted by sep-
arating symmetric and antisymmetric parts of the quantity ÊAB . The
result is

Ĝµν = Gµν −
1

2

(
QµaM

−1
ab Qbν +QνaM

−1
ab Qbµ

)
, (20)

Ĝµa =
1

2

(
QµbM

−1
ba −QbµM

−1
ab

)
, (21)

Ĝab =
1

2

(
M−1ab +M−1ba

)
, (22)

B̂µν = Bµν −
1

2

(
QµaM

−1
ab Qbν −QνaM

−1
ab Qbµ

)
, (23)

B̂µa =
1

2

(
QµbM

−1
ba +QbµM

−1
ab

)
, (24)

B̂ab =
1

2

(
M−1ab −M

−1
ba

)
. (25)
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The above expressions define a NATD procedure which gives the dual of
geometry possessing some non-abelian symmetry group G acting with-
out isotropy. The group structure is implicitly encoded in thematrixMab

through the structure constants f cab. The fact that the group acts without
isotropy is crucial because this allows us to completely fix the gauge by
algebraic conditions on the target space coordinates. Consequently, we
are able to clearly distinguish between dual and original coordinates. In
Section 5 we will use this procedure to obtain the NATD for the particu-
lar case of SU(2) group structure supported by the pp-wave limit of the
Pilch-Warner geometry.

2.2 The RR sector

The transformation rules of the R-R field strengths under NATD have
been worked out recently using Fourier-Mukai transform for the case of
backgrounds possessing SU(2) symmetry acting without isotropy. Our
aim is to use this procedure for the pp-wave limit of the PW geome-
try, which has the same symmetry. The concrete formula obtained in [5]
states

Ĝ =

∫
G

G ∧ eB̂−B−dx
a∧La+ 1

2x
afa

bcL
b∧Lc

, (26)

where G =
∑
p Gp is the sum of the gauge invariant RR p-form field

strengths and Ĝ is the sum of the dual ones; the index p takes even val-
ues for type IIA and odd values for type IIB supergravities. We will work
in the co-frame of left-invariant one-forms La, in which G can be always
represented as sum of differential forms that do not contain any La, dif-
ferential forms that contain oneLa, differential forms that containwedge
product of two La’s, and differential forms that contain wedge products
of three La’s

G = G(0) + G(1)a ∧ La +
1

2
G(2)ab ∧ L

a ∧ Lb + G(3) ∧ L1 ∧ L2 ∧ L3. (27)

We will apply this in Section 6 to find the NAT-dual RR fields for the pp-
wave metric of the PW solution.

3 The Pilch-Warner solution

The type IIB Pilch-Warner (PW) background [7] is a solution to theN = 8
five-dimensional gauged supergravity lifted to ten dimensions. In the ul-
tra–violet (UV) critical point of the flow, it gives the standard maximally
supersymmetricAdS5 geometry, while in the IR it provides a gravity dual
of N = 4 SYM theory, which is softly broken down to N = 2 supersym-
metry [18, 19]. In this paper we adopt the setup given in [20], where the
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original solution is shifted in one of its global U(1)φ isometries in a way
that cancels the factor of ei φ in the A2 potential1. The metric of the 10-
dimensional PW solution is given by [20]

ds2 = Ω2 ds2AdS5
+ ds2SQ5 . (28)

Here one has the warped AdS part

ds2AdS5
= L2

(
−cosh2ρdτ2 + dρ2 + sinh2ρdΩ2

3

)
, (29)

where dΩ2
3 = dφ21 + sin2φ1

(
dφ22 + sin2φ2 dφ23

)
is the metric on the unit

3-sphere, and the squashed 5-sphere

ds2SQ5 =
2

3
L2 Ω2

[
dθ2 +

4 cos2θ

3− cos 2θ

(
σ2
1 + σ2

2

)
+

4 sin22θ

(3− cos 2θ)
2 (σ3 + dφ)

2

+
2

3

(
1− 3 cos 2θ

cos 2θ − 3

)2(
dφ− 4 cos2θ

1− 3 cos 2θ
σ3

)2
]
. (30)

In the above expressions one also has the warp factor,

Ω2 = 21/3
(

1− 1

3
cos 2θ

)1/2

, (31)

and the left-invariant SU(2) one-forms,

σ1 =
1

2
(sinβ dα− cosβ sinα dγ) ,

σ2 = −1

2
(cosβ dα+ sinβ sinα dγ) ,

σ3 =
1

2
(dβ + cosα dγ) , (32)

which satisfy dσi = εijk σj ∧ σk, so the metric on the unit 3-sphere is
ds2S3 = σi σi. The PW background also contains non-trivial NS-NS and
R-R fluxes, which satisfy the following equations of motion and Bianchi
identities [21]:

Φ = C0 = 0, F1 = dC0 = 0 ,

C2 = Re(A2), B2 = Im(A2) ,

H3 = dB2, F3 = dC2 − C0 ∧H3 = dC2 ,

dF3 = dH3 = 0, dF5 = H3 ∧ F3 ,

d(?F3) = −H3 ∧ F5, d(?H3) = F3 ∧ F5, F5 = ?F5 ,

1This fact will considerably simplify the later analysis of the T-dual geometry.
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dC4 + dC̃4 = F5 + C2 ∧H3 ,

F7 = ?F3 = dC6 − C4 ∧H3 ,

F9 = ?F1 = 0 = dC8 − C6 ∧H3 = C6 ∧H3, χ = C8 = 0 . (33)

Here the field strengths are defined in terms of the corresponding poten-
tials as

H3 ≡ dB2, Fp ≡ dCp−1 − Cp−3 ∧H3. (34)

The only trivial is the dilaton (Φ) /axion (C0) system of scalars. The first
non-trivial fields are the NS-NSB2-form field and the R-R 2-form poten-
tial C2

B2 = −4

9
21/3 L2 cos θ

(
dθ ∧ σ1 +

2 sin 2θ

3− cos 2θ
(σ3 + dφ) ∧ σ2

)
, (35)

C2 =
4

9
21/3 L2 cos θ

(
dθ ∧ σ2 −

2 sin 2θ

3− cos 2θ
(σ3 + dφ) ∧ σ1

)
. (36)

These fields can be encoded in the following 2-form complex potential:

A2 = C2+iB2 = −4i21/3L2 cos θ

9

(
dθ − 2i sin 2θ

3− cos 2θ
(σ3 + dφ)

)
∧(σ1+iσ2) .

(37)
One immediately notes that there is no factor of ei φ in the above formula
as opposed to the original solution in [7]. The solution also includes the
self-dual 5-form flux, F5 = ?F5

F5 = −25/3

3
L4 cosh ρ sinh3ρ (1 + ?) dτ ∧ dρ ∧ ε(S3

φ) , (38)

where ε(S3
φ) = sin2 φ1 sinφ2 dφ1 ∧ dφ2 ∧ dφ3, and ? is the Hodge star

operator. Here we will explicitly give the expressions for the F3, F5 and
F7 fluxes, which will be used to calculate their corresponding Penrose
limit. The F3 field strength is given by

F3 = F
(1)
3 dθ ∧ σ1 ∧ σ3 + F

(2)
3 dφ ∧ σ2 ∧ σ3 + F

(3)
3 dθ ∧ dφ ∧ σ1 , (39)

where

F
(1)
3 =

64× 21/3L2cos3θ

9(3− cos 2θ)
2 ,

F
(2)
3 =

32× 21/3L2cos2θ sin θ

9(3− cos 2θ)
,

F
(3)
3 =

F
(1)
3

16 cos2θ
(11− 20 cos 2θ + cos 4θ) .

(40)
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The explicit form of the self-dual F5 form flux is

F5 = F
(1)
5 dτ ∧ dρ ∧ dφ1 ∧ dφ2 ∧ dφ3 + F

(2)
5 dθ ∧ dφ ∧ σ1 ∧ σ2 ∧ σ3 , (41)

with the following components:

F
(1)
5 = −8× 22/3 L4

3
cosh ρ sinh3ρ sin2φ1 sinφ2 ,

F
(2)
5 = −1024× 22/3 L4 cos3θ sin θ

81 (3− cos 2θ)
2 . (42)

And finally, the F7 = ?F3 field strength is written by

F7 = dτ∧dρ∧dφ1∧dφ2∧dφ3∧
(
F

(1)
7 σ2 ∧ σ3 + F

(2)
7 dθ ∧ σ1 + F

(3)
7 dφ ∧ σ2

)
,

(43)
where one has

F
(1)
7 =

32L6 cos2θ sin θ (11− cos 2θ)

27 (3− cos 2θ)
cosh ρ sinh3ρ sin2φ1 sinφ2 ,

F
(2)
7 =

4

9
L6 (cos 3θ − 5 cos θ) cosh ρ sinh3ρ sin2φ1 sinφ2 ,

F
(3)
7 = −256L6 cos2θ sin θ

27 (3− cos 2θ)
cosh ρ sinh3ρ sin2φ1 sinφ2 . (44)

All the non-trivial NS and R-R fluxes remain non-zero in the correspond-
ing Penrose limit2.

4 The Penrose limit of the Pilch-Warner solution

Following ref. [22], we are going to find a new Penrose limit of the shifted
solution3 (29). The geodesics lie near ρ = 0, θ = π/2, where one hasx− ∼
L2 (τ − 2φ/3). We can Introduce the following coordinate redefinitions:

ρ =
31/4

22/3
r

L
, θ =

π

2
− 33/4

2× 21/6
y

L
,

τ =
31/4

2× 21/6

(
u+

v

L2

)
, φ =

3× 31/4

4× 21/6

(
u− v

L2

)
, (45)

2The Penrose limit of the solution (29) is, in fact, one point in a family of pp-wave solu-
tions. One can make more general Ansatze for the fluxes by introducing arbitrary constant
parameters, and one can even introduce a non-constant dilaton and axion. The result is a
large, multi-parameter space of solutions.

3There are several other papers, namely [20, 23], dealing with the Penrose limit of the
PW solution, but they use different geodesics.
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where u = x+ and v = x− are the light-cone coordinates. In the limit
L→∞ one finds the following metric4:

ds̃2 = −2dudv− a
4

(r2 + y2)du2 +dy2 + y2
(
σ2
1 + σ2

2 +
(
σ3 +

√
a

4
du
)2)

+ dr2 + r2
(
dφ21 + sin2φ1

(
dφ22 + sin2φ2dφ23

))
, (46)

where a =
√

3/21/3. The Penrose limit of the 5-form (38) gives

F̃5 = F̃
(1)
5 du ∧ dr ∧ dφ1 ∧ dφ2 ∧ dφ3 + F̃

(2)
5 du ∧ dy ∧ σ1 ∧ σ2 ∧ σ3 , (47)

where

F̃
(1)
5 = −

√
a

4
r3 sin2φ1 sinφ2, F̃

(2)
5 = −

√
a

4
y3 sinφ2 . (48)

The limit of the 2-form potential A2 is given by

Ã2 =
y2√

3
σ1 ∧ σ3 −

33/4 y2

4× 21/6
du ∧ σ1 −

y√
3
dy ∧ σ2

+ i

(
y2√

3
σ2 ∧ σ3 −

33/4 y2

4× 21/6
du ∧ σ2 +

y√
3
dy ∧ σ1

)
, (49)

which allows one easily to extract the corresponding Penrose limits of
the NS-NS 2-form B2 and the R-R 2-form potential C2, namely

B̃2 =
y2√

3
σ2 ∧ σ3 −

33/4 y2

4× 21/6
du ∧ σ2 +

y√
3
dy ∧ σ1 . (50)

C̃2 =
y2√

3
σ1 ∧ σ3 −

33/4 y2

4× 21/6
du ∧ σ1 −

y√
3
dy ∧ σ2 , (51)

For simplicity we will refer to the components of the B-field as
B̃σ2σ3 , B̃uσ2 and B̃yσ1 , with values given in (50). For the limit of the F3

flux in the sigma co-frame one finds

F̃3 = F̃
(1)
3 du ∧ dy ∧ σ1 + F̃

(2)
3 du ∧ σ2 ∧ σ3 , (52)

where

F̃
(1)
3 =

33/4 y

2× 21/6
, F̃

(2)
3 =

33/4 y2

2× 21/6
. (53)

4Here we have introduced a tilde for the pp-wave metric. From now on it will be conve-
nient to use tilde for the pp-wave quantities, while we will use widehat for the NAT-dual
quantities.
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Finally, the Penrose limit of the 7-form flux (43) gives

F̃7 = F̃
(1)
7 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dy ∧ σ1

+ F̃
(2)
7 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ σ2 ∧ σ3 , (54)

with the following components:

F̃
(1)
7 = −33/4 r3 y sin2φ1

2× 21/6
, F̃

(2)
7 = −33/4 r3 y2 sin2φ1

2× 21/6
. (55)

In the following Section we apply the NATD procedure from [5] along the
SU(2) isometry of the pp-wave metric (46).

5 The NATD for the NS-NS sector

The solution (46) retains the SU(2) invariance of the original PWmetric
(28), so we can apply the NATD procedure given in [5], which we adapted
for the left invariant SU(2) one-forms from eq. (32). The result is the
following T-dual metric:

dŝ 2 = −2 du dv + Ĝuu du2 + 2 Ĝuy du dy + Ĝyy dy2

+ 2

3∑
a=1

Ĝuxa du dxa + 2

3∑
a=1

Ĝyxa dy dxa +

3∑
a=1

Ĝxaxa dx
2
a

+

3∑
a6=b=1

Ĝxaxb
dxa dxb + dr2 + r2 dΩ2

3 , (56)

with components given by

Ĝuu = −
√

3 r2

4× 21/3
−
y4
(
3
√

3x21 + 6x1 y
2 +
√

3
(
4x23 + y4

))
4× 21/3M

,

Ĝuy = Ĝyu = −
x2 y

3
(
3x1 +

√
3 y2

)
21/6 33/4M

, Ĝyy =
4

3
−

4
(
x22 + x23

)
y2

3M
,

Ĝux1
= Ĝx1u = −

y2
(
6x1 x2 +

(√
3x2 − 3x3

)
y2
)

2× 21/6 31/4M
,

Ĝux2
= Ĝx2u = −

33/4 y2
(
4x22 + y4

)
4× 21/6M

,

Ĝux3 = Ĝx3u = −
y2
(
12x2 x3 + 6x1 y

2 +
√

3 y4
)

4× 21/6 31/4M
,

Ĝyx1
= Ĝx1y =

4 y
(
3
√

3x21 + 3x1 y
2 +
√

3 y4
)

9M
,

Ĝyx2 = Ĝx2y =
4
√

3x1 x2 y + 2
(
x2 +

√
3x3

)
y3

3M
,
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Ĝyx3 = Ĝx3y =
2 y
(
6x1 x3 +

(√
3x3 − 3x2

)
y2
)

3
√

3M
,

Ĝx1x1
=

4(3x21+
√

3x1y
2+y4)

3M
, Ĝx2x2

=
4x22+y4

M
, Ĝx3x3

=
4x23+y4

M
,

Ĝx1x2
= Ĝx2x1

=
2x2(6x1+

√
3y2)

3M
, Ĝx1x3

= Ĝx3x1
=

2x3(6x1+
√

3y2)

3M
,

Ĝx2x3
= Ĝx3x2

=
4x2 x3
M

,

and
M =

4

3
y2
(

3
(
x21 + x22 + x23

)
+
√

3x1 y
2 + y4

)
. (57)

The dual B-field has the following form:

B̂2 = B̂uy du ∧ dy +

3∑
a=1

B̂uxa
du ∧ dxa +

1

2

3∑
a,b=1

B̂xaxb
dxa ∧ dxb , (58)

where

B̂uy = −B̂yu =
x3 y

3
(√

3x1 − y2
)

21/6 33/4M
,

B̂ux1
= −B̂x1u =

y2
(
6x1 x3 +

(
3x2 +

√
3x3

)
y2
)

2× 21/6 33/4M
,

B̂ux2 = −B̂x2u = −
y2
(
−12x2 x3 + 6x1 y

2 +
√

3 y4
)

4× 21/6 33/4M
,

B̂ux3
= −B̂x3u =

31/4 y2
(
4x23 + y4

)
4× 21/6M

,

B̂x1x2 = −B̂x2x1 = −2x3 y
2

M
, B̂x1x3 = −B̂x3x1 =

2x2 y
2

M
,

B̂x2x3
= −B̂x3x2

= −
y2
(
6x1 +

√
3 y2

)
3M

.

As expected the expressions for the dual metric and B-field are fairly
much more complicated than their initial counterparts before the NATD
procedures.

6 The NATD for the R-R sector

One can also apply the Fourier-Mukai on the pp-wave R-R forms, which
leads to the following non-trivial NAT-Dual R-R fluxes: F̂2, F̂4, F̂6, and
F̂8, while F̂10 = 0. The result is listed below. The 2-form flux is

F̂2 = F̂
(1)
2 du ∧ dy − F̃ (2)

3 du ∧ dx1 , (59)

12



NATD from Penrose limit of the PW solution

where the coefficients with the tilde are defined in Section 3. The wide-
hatted coefficient is

F̂
(1)
2 =

(
2x1 − B̃σ2σ3

)
F̃

(1)
3 − B̃yσ1

F̃
(2)
3 + F̃

(2)
5 . (60)

The 4-form flux is

F̂4 = F̂
(1)
4 du ∧ dx1 ∧ dx2 ∧ dx3 + F̂

(2)
4 du ∧ dy ∧ dx1 ∧ dx2 (61)

+ F̂
(3)
4 du ∧ dy ∧ dx1 ∧ dx3 + F̂

(4)
4 du ∧ dy ∧ dx2 ∧ dx3 .

where

F̂
(1)
4 = −B̂x2x3

F̃
(2)
3 , F̂

(2)
4 = B̂x1x2

F̂
(1)
2 ,

F̂
(3)
4 = B̂x1x3

F̂
(1)
2 , F̂

(4)
4 = −F̃ (1)

3 + B̂x2x3
F̂

(1)
2 .

The 6-form field strength is

F̂6 = F̂
(1)
6 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dx1

− 2x2 F̃
(1)
5 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dx2

− 2x3 F̃
(1)
5 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dx3

+ F̂
(2)
6 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dy , (62)

where

F̂
(1)
6 = −

(
2x1 − B̃σ2σ3

)
F̃

(1)
5 − F̃ (2)

7 ,

F̂
(2)
6 =

(
2x1 − B̃σ2σ3

) (
F̃

(1)
7 − B̃yσ1 F̃

(1)
5

)
− B̃yσ1 F̃

(2)
7 .

Finally, the 8-form flux is given by

F̂ 8 = F̂
(1)
8 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dy ∧ dx1 ∧ dx2 (63)

+ F̂
(2)
8 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dy ∧ dx1 ∧ dx3

+ F̂
(3)
8 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dy ∧ dx2 ∧ dx3

+ F̂
(4)
8 du ∧ dφ1 ∧ dφ2 ∧ dφ3 ∧ dr ∧ dx1 ∧ dx2 ∧ dx3 .

with the following components:

F̂
(1)
8 = B̂x1x2

F̂
(2)
6 , F̂

(2)
8 = B̂x1x3

F̂
(2)
6 ,

F̂
(3)
8 =

(
B̃yσ1

F̃
(1)
5 − F̃ (1)

7

)
+ B̂x2x3

F̂
(2)
6 ,

F̂
(4)
8 =

(
2x2B̂x1x3

− 2x3B̂x1x2
−
(
2x1 − B̃σ2σ3

)
B̂x2x3

+ 1
)
F̃

(1)
5 − B̂x2x3

F̃
(2)
7 .

Finally, the last type IIA dual field strength F10 vanishes.
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7 Conclusion

Plane waves or pp-wave spacetimes are solutions that model radiation
moving at the speed of light and may consist of electromagnetic or grav-
itational radiation. The interest of considering pp-wave geometries is
that they may become invaluable tool for studying the far Universe, es-
pecially after the recent discovery of gravitational waves [10, 11]. An
important feature of string theory on such backgrounds is that it is ex-
actly solvable, which can provide insights in many aspects of the the-
ory in more complicated geometries especially if they are dual to non-
conformal gauge theories.

Furthermore string theory exibits numerous dualities between seemingly
different theories, which give us powerful new ways to look at different
physical phenomena. One such duality is T-duality, which relates the
weak coupling sectors of two string theories. The key point here is that
these theories live in spacetimes with reciprocal radii of their compact
dimensions.

Recently, the authors of [5] derived the T-duality transformation rules
for backgrounds possessing non-abelian SU(2)G-structure, which is the
setup we adopt in this work. Here we consider non-abelian T-duality
from the Penrose limit of the Pilch-Warner supergravity solution. This
limit also contains non-trivial NS and R-R fluxes. It is crucial for us that
the new Penrose limit retains the SU(2)G-structure of the original solu-
tion. This fact facilitates the calculation of its non-abelian T-dual coun-
terpart.

Following [5] we obtain the ten-dimensional non-abelian T-dual of a cer-
tain pp-wave limit of the Pilch-Warner metric together with the dual NS
Kalb-Ramond B-field. The result for the dual metric and B-field is rela-
tively complicated, because the application of theNATDproceduremixes
the coordinates in a non-trivial way.

We also obtain the type IIA dual field strengths of the R-R fluxes via ap-
plication of the Fourier-Mukai transform. The resulting expressions for
the dual fluxes are also complicated, which is an expected property of the
NATD procedure.

Obviously theNATDprocedure generates complicated geometries even if
we consider the simpler case of pp-waves. One interesting question that
arise here is do these procedures (NATD and PL) commute. Although we
expect that interchanging the order of the procedures will lead to dif-
ferent solutions, this assumption needs more careful analysis, which we
hope to deliver soon.
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